Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.677
1.
J Neuroinflammation ; 21(1): 118, 2024 May 07.
Article En | MEDLINE | ID: mdl-38715090

Maternal inflammation during gestation is associated with a later diagnosis of neurodevelopmental disorders including autism spectrum disorder (ASD). However, the specific impact of maternal immune activation (MIA) on placental and fetal brain development remains insufficiently understood. This study aimed to investigate the effects of MIA by analyzing placental and brain tissues obtained from the offspring of pregnant C57BL/6 dams exposed to polyinosinic: polycytidylic acid (poly I: C) on embryonic day 12.5. Cytokine and mRNA content in the placenta and brain tissues were assessed using multiplex cytokine assays and bulk-RNA sequencing on embryonic day 17.5. In the placenta, male MIA offspring exhibited higher levels of GM-CSF, IL-6, TNFα, and LT-α, but there were no differences in female MIA offspring. Furthermore, differentially expressed genes (DEG) in the placental tissues of MIA offspring were found to be enriched in processes related to synaptic vesicles and neuronal development. Placental mRNA from male and female MIA offspring were both enriched in synaptic and neuronal development terms, whereas females were also enriched for terms related to excitatory and inhibitory signaling. In the fetal brain of MIA offspring, increased levels of IL-28B and IL-25 were observed with male MIA offspring and increased levels of LT-α were observed in the female offspring. Notably, we identified few stable MIA fetal brain DEG, with no male specific difference whereas females had DEG related to immune cytokine signaling. Overall, these findings support the hypothesis that MIA contributes to the sex- specific abnormalities observed in ASD, possibly through altered neuron developed from exposure to inflammatory cytokines. Future research should aim to investigate how interactions between the placenta and fetal brain contribute to altered neuronal development in the context of MIA.


Brain , Cytokines , Mice, Inbred C57BL , Neurodevelopmental Disorders , Placenta , Prenatal Exposure Delayed Effects , Sex Characteristics , Female , Animals , Pregnancy , Male , Cytokines/metabolism , Cytokines/genetics , Mice , Brain/metabolism , Brain/immunology , Brain/embryology , Placenta/metabolism , Placenta/immunology , Prenatal Exposure Delayed Effects/immunology , Prenatal Exposure Delayed Effects/metabolism , Prenatal Exposure Delayed Effects/chemically induced , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/immunology , Neurodevelopmental Disorders/metabolism , Poly I-C/toxicity , Transcriptome , Disease Models, Animal , Fetus/metabolism
2.
Methods Mol Biol ; 2799: 1-11, 2024.
Article En | MEDLINE | ID: mdl-38727899

N-methyl-D-aspartate receptors (NMDAR) are ligand-gated ion channels mediating excitatory neurotransmission and are important for normal brain development, cognitive abilities, and motor functions. Pathogenic variants in the Glutamate receptor Ionotropic N-methyl-D-aspartate (GRIN) genes (GRIN1, GRIN2A-D) encoding NMDAR subunits have been associated with a wide spectrum of neurodevelopmental disorders and epilepsies ranging from treatable focal epilepsies to devastating early-onset developmental and epileptic encephalopathies. Genetic variants in NMDA receptor genes can cause a range of complex alterations to receptor properties resulting in various degrees of loss-of-function, gain-of-function, or mixtures thereof. Understanding how genetic variants affect the function of the receptors, therefore, represents an important first step in the ongoing development towards targeted therapies. Currently, targeted treatment options for GRIN-related diseases are limited. However, treatment with memantine has been reported to significantly reduce seizure frequency in a few individuals with developmental and epileptic encephalopathies harboring de novo gain-of-function GRIN2A missense variants, and supplementary treatment with L-serine has been associated with improved motor and cognitive performance as well as reduced seizure frequency in patients with GRIN2B loss-of-function missense variants as well as GRIN2A and GRIN2B null variants.


Epilepsy , Neurodevelopmental Disorders , Receptors, N-Methyl-D-Aspartate , Receptors, N-Methyl-D-Aspartate/genetics , Receptors, N-Methyl-D-Aspartate/metabolism , Humans , Neurodevelopmental Disorders/genetics , Epilepsy/genetics , Epilepsy/drug therapy , Genetic Predisposition to Disease , Genetic Variation , Memantine/therapeutic use , Memantine/pharmacology
3.
Psychiatr Genet ; 34(3): 74-80, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38690959

BACKGROUND: Biallelic loss-of-function variants in SMPD4 cause a rare and severe neurodevelopmental disorder. These variants have been identified in a group of children with neurodevelopmental disorders with microcephaly, arthrogryposis, and structural brain anomalies. SMPD4 encodes a sphingomyelinase that hydrolyzes sphingomyelin into ceramide at neutral pH and can thereby affect membrane lipid homeostasis. SMPD4 localizes to the membranes of the endoplasmic reticulum and nuclear envelope and interacts with nuclear pore complexes. MATERIALS AND METHODS: For the efficient prenatal diagnosis of rare and undiagnosed diseases, the parallel detection of copy number variants (CNVs) and single nucleotide variants using whole-exome analysis is required. A physical examination of the parents was performed. Karyotype and whole-exome analysis were performed for the fetus and the parents. RESULTS: A fetus with microcephaly and arthrogryposis; biallelic null variants (c.387-1G>A; Chr2[GRCh38]: g.130142742_130202459del) were detected by whole-exome sequencing (WES). We have reported for the first time the biallelic loss-of-function mutations in SMPD4 in patients born to unrelated parents in China. CONCLUSION: WES could replace chromosomal microarray analysis and copy number variation sequencing as a more cost-effective genetic test for detecting CNVs and diagnosing highly heterogeneous conditions.


DNA Copy Number Variations , Exome Sequencing , Microcephaly , Polymorphism, Single Nucleotide , Prenatal Diagnosis , Sphingomyelin Phosphodiesterase , Humans , DNA Copy Number Variations/genetics , Exome Sequencing/methods , Female , Prenatal Diagnosis/methods , Sphingomyelin Phosphodiesterase/genetics , Polymorphism, Single Nucleotide/genetics , Pregnancy , Microcephaly/genetics , Heterozygote , Arthrogryposis/genetics , Arthrogryposis/diagnosis , Male , Exome/genetics , Mutation/genetics , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/diagnosis
4.
Dis Model Mech ; 17(4)2024 Apr 01.
Article En | MEDLINE | ID: mdl-38566589

The addition of O-linked ß-N-acetylglucosamine (O-GlcNAc) to proteins (referred to as O-GlcNAcylation) is a modification that is crucial for vertebrate development. O-GlcNAcylation is catalyzed by O-GlcNAc transferase (OGT) and reversed by O-GlcNAcase (OGA). Missense variants of OGT have recently been shown to segregate with an X-linked syndromic form of intellectual disability, OGT-linked congenital disorder of glycosylation (OGT-CDG). Although the existence of OGT-CDG suggests that O-GlcNAcylation is crucial for neurodevelopment and/or cognitive function, the underlying pathophysiologic mechanisms remain unknown. Here we report a mouse line that carries a catalytically impaired OGT-CDG variant. These mice show altered O-GlcNAc homeostasis with decreased global O-GlcNAcylation and reduced levels of OGT and OGA in the brain. Phenotypic characterization of the mice revealed lower body weight associated with reduced body fat mass, short stature and microcephaly. This mouse model will serve as an important tool to study genotype-phenotype correlations in OGT-CDG in vivo and for the development of possible treatment avenues for this disorder.


Disease Models, Animal , Intellectual Disability , N-Acetylglucosaminyltransferases , Animals , N-Acetylglucosaminyltransferases/metabolism , N-Acetylglucosaminyltransferases/genetics , N-Acetylglucosaminyltransferases/deficiency , Intellectual Disability/genetics , Brain/pathology , Brain/metabolism , Phenotype , Mice , Neurodevelopmental Disorders/pathology , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/enzymology , beta-N-Acetylhexosaminidases/metabolism , Glycosylation , Body Weight
5.
J Neurodev Disord ; 16(1): 21, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38658850

BACKGROUND: Succinic semialdehyde dehydrogenase deficiency (SSADHD) represents a model neurometabolic disease at the fulcrum of translational research within the Boston Children's Hospital Intellectual and Developmental Disabilities Research Centers (IDDRC), including the NIH-sponsored natural history study of clinical, neurophysiological, neuroimaging, and molecular markers, patient-derived induced pluripotent stem cells (iPSC) characterization, and development of a murine model for tightly regulated, cell-specific gene therapy. METHODS: SSADHD subjects underwent clinical evaluations, neuropsychological assessments, biochemical quantification of γ-aminobutyrate (GABA) and related metabolites, electroencephalography (standard and high density), magnetoencephalography, transcranial magnetic stimulation, magnetic resonance imaging and spectroscopy, and genetic tests. This was parallel to laboratory molecular investigations of in vitro GABAergic neurons derived from induced human pluripotent stem cells (hiPSCs) of SSADHD subjects and biochemical analyses performed on a versatile murine model that uses an inducible and reversible rescue strategy allowing on-demand and cell-specific gene therapy. RESULTS: The 62 SSADHD subjects [53% females, median (IQR) age of 9.6 (5.4-14.5) years] included in the study had a reported symptom onset at ∼ 6 months and were diagnosed at a median age of 4 years. Language developmental delays were more prominent than motor. Autism, epilepsy, movement disorders, sleep disturbances, and various psychiatric behaviors constituted the core of the disorder's clinical phenotype. Lower clinical severity scores, indicating worst severity, coincided with older age (R= -0.302, p = 0.03), as well as age-adjusted lower values of plasma γ-aminobutyrate (GABA) (R = 0.337, p = 0.02) and γ-hydroxybutyrate (GHB) (R = 0.360, p = 0.05). While epilepsy and psychiatric behaviors increase in severity with age, communication abilities and motor function tend to improve. iPSCs, which were differentiated into GABAergic neurons, represent the first in vitro neuronal model of SSADHD and express the neuronal marker microtubule-associated protein 2 (MAP2), as well as GABA. GABA-metabolism in induced GABAergic neurons could be reversed using CRISPR correction of the pathogenic variants or mRNA transfection and SSADHD iPSCs were associated with excessive glutamatergic activity and related synaptic excitation. CONCLUSIONS: Findings from the SSADHD Natural History Study converge with iPSC and animal model work focused on a common disorder within our IDDRC, deepening our knowledge of the pathophysiology and longitudinal clinical course of a complex neurodevelopmental disorder. This further enables the identification of biomarkers and changes throughout development that will be essential for upcoming targeted trials of enzyme replacement and gene therapy.


Amino Acid Metabolism, Inborn Errors , Developmental Disabilities , Induced Pluripotent Stem Cells , Succinate-Semialdehyde Dehydrogenase , Adolescent , Animals , Child , Child, Preschool , Female , Humans , Male , Mice , Amino Acid Metabolism, Inborn Errors/therapy , Amino Acid Metabolism, Inborn Errors/physiopathology , Amino Acid Metabolism, Inborn Errors/genetics , Amino Acid Metabolism, Inborn Errors/complications , Amino Acid Metabolism, Inborn Errors/metabolism , Brain/metabolism , Brain/physiopathology , Disease Models, Animal , GABAergic Neurons/metabolism , gamma-Aminobutyric Acid/metabolism , Induced Pluripotent Stem Cells/metabolism , Neurodevelopmental Disorders/metabolism , Neurodevelopmental Disorders/etiology , Neurodevelopmental Disorders/genetics , Succinate-Semialdehyde Dehydrogenase/deficiency , Succinate-Semialdehyde Dehydrogenase/metabolism , Succinate-Semialdehyde Dehydrogenase/genetics
6.
Sci Rep ; 14(1): 8708, 2024 04 15.
Article En | MEDLINE | ID: mdl-38622173

Recent work has revealed an important role for rare, incompletely penetrant inherited coding variants in neurodevelopmental disorders (NDDs). Additionally, we have previously shown that common variants contribute to risk for rare NDDs. Here, we investigate whether common variants exert their effects by modifying gene expression, using multi-cis-expression quantitative trait loci (cis-eQTL) prediction models. We first performed a transcriptome-wide association study for NDDs using 6987 probands from the Deciphering Developmental Disorders (DDD) study and 9720 controls, and found one gene, RAB2A, that passed multiple testing correction (p = 6.7 × 10-7). We then investigated whether cis-eQTLs modify the penetrance of putatively damaging, rare coding variants inherited by NDD probands from their unaffected parents in a set of 1700 trios. We found no evidence that unaffected parents transmitting putatively damaging coding variants had higher genetically-predicted expression of the variant-harboring gene than their child. In probands carrying putatively damaging variants in constrained genes, the genetically-predicted expression of these genes in blood was lower than in controls (p = 2.7 × 10-3). However, results for proband-control comparisons were inconsistent across different sets of genes, variant filters and tissues. We find limited evidence that common cis-eQTLs modify penetrance of rare coding variants in a large cohort of NDD probands.


Neurodevelopmental Disorders , Polymorphism, Single Nucleotide , Child , Humans , Penetrance , Quantitative Trait Loci/genetics , Neurodevelopmental Disorders/genetics , Transcriptome
7.
J Neurodev Disord ; 16(1): 15, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38622540

BACKGROUND: Neurodevelopmental conditions such as intellectual disability (ID) and autism spectrum disorder (ASD) can stem from a broad array of inherited and de novo genetic differences, with marked physiological and behavioral impacts. We currently know little about the psychiatric phenotypes of rare genetic variants associated with ASD, despite heightened risk of psychiatric concerns in ASD more broadly. Understanding behavioral features of these variants can identify shared versus specific phenotypes across gene groups, facilitate mechanistic models, and provide prognostic insights to inform clinical practice. In this paper, we evaluate behavioral features within three gene groups associated with ID and ASD - ADNP, CHD8, and DYRK1A - with two aims: (1) characterize phenotypes across behavioral domains of anxiety, depression, ADHD, and challenging behavior; and (2) understand whether age and early developmental milestones are associated with later mental health outcomes. METHODS: Phenotypic data were obtained for youth with disruptive variants in ADNP, CHD8, or DYRK1A (N = 65, mean age = 8.7 years, 40% female) within a long-running, genetics-first study. Standardized caregiver-report measures of mental health features (anxiety, depression, attention-deficit/hyperactivity, oppositional behavior) and developmental history were extracted and analyzed for effects of gene group, age, and early developmental milestones on mental health features. RESULTS: Patterns of mental health features varied by group, with anxiety most prominent for CHD8, oppositional features overrepresented among ADNP, and attentional and depressive features most prominent for DYRK1A. For the full sample, age was positively associated with anxiety features, such that elevations in anxiety relative to same-age and same-sex peers may worsen with increasing age. Predictive utility of early developmental milestones was limited, with evidence of early language delays predicting greater difficulties across behavioral domains only for the CHD8 group. CONCLUSIONS: Despite shared associations with autism and intellectual disability, disruptive variants in ADNP, CHD8, and DYRK1A may yield variable psychiatric phenotypes among children and adolescents. With replication in larger samples over time, efforts such as these may contribute to improved clinical care for affected children and adolescents, allow for earlier identification of emerging mental health difficulties, and promote early intervention to alleviate concerns and improve quality of life.


Autism Spectrum Disorder , Intellectual Disability , Neurodevelopmental Disorders , Adolescent , Child , Female , Humans , Male , Autism Spectrum Disorder/complications , DNA-Binding Proteins/genetics , Homeodomain Proteins/genetics , Intellectual Disability/genetics , Intellectual Disability/complications , Mental Health , Nerve Tissue Proteins/genetics , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/complications , Quality of Life , Transcription Factors/genetics
8.
Ital J Pediatr ; 50(1): 63, 2024 Apr 08.
Article En | MEDLINE | ID: mdl-38589916

BACKGROUND: This study aims to thoroughly study the connection between congenital heart disease (CHD) and neurodevelopmental disorders (NDDs) through observational and Mendelian randomization (MR) designs. METHODS: This observational study uses data from the National Survey of Children's Health (2020-2021). Multivariable logistic regression and propensity score matching (PSM) were performed to analyze the association. PSM was used to minimize bias for covariates such as age, race, gender, maternal age, birth weight, concussion or brain injury, preterm birth, cerebral palsy, Down syndrome, and other inherited conditions. In MR analyses, inverse variance-weighted measures, weighted median, and MR-Egger were employed to calculate causal effects. RESULTS: A total of 85,314 children aged 0-17 were analyzed in this study. In regression analysis, CHD (p = 0.04), the current heart condition (p = 0.03), and the severity of current heart condition (p < 0.05) had a suggestive association with speech or language disorders. The severity of current heart condition (p = 0.08) has a potential statistically significant association with attention deficit hyperactivity disorder(ADHD). In PSM samples, ADHD(p = 0.003), intellectual disability(p = 0.012), and speech or language disorders(p < 0.001) were all significantly associated with CHD. The severity of current heart condition (p < 0.001) also had a significant association with autism. MR analysis did not find causality between genetically proxied congenital cardiac malformations and the risk of NDDs. CONCLUSIONS: Our study shows that children with CHD have an increased risk of developing NDDs. Heart conditions currently and severity of current heart conditions were also significantly associated with these NDDs. In the future, we need to try more methods to clarify the causal relationship between CHD and NDDs.


Heart Defects, Congenital , Language Disorders , Neurodevelopmental Disorders , Premature Birth , Child , Female , Humans , Infant, Newborn , Heart Defects, Congenital/epidemiology , Heart Defects, Congenital/genetics , Mendelian Randomization Analysis , Neurodevelopmental Disorders/epidemiology , Neurodevelopmental Disorders/genetics , Infant , Child, Preschool , Adolescent , Male
9.
J Cell Biol ; 223(6)2024 Jun 03.
Article En | MEDLINE | ID: mdl-38568173

Disruption of synapse assembly and maturation leads to a broad spectrum of neurodevelopmental disorders. Presynaptic proteins are largely synthesized in the soma, where they are packaged into precursor vesicles and transported into distal axons to ensure precise assembly and maintenance of presynapses. Due to their morphological features, neurons face challenges in the delivery of presynaptic cargos to nascent boutons. Thus, targeted axonal transport is vital to build functional synapses. A growing number of mutations in genes encoding the transport machinery have been linked to neurodevelopmental disorders. Emerging lines of evidence have started to uncover presynaptic mechanisms underlying axonal transport defects, thus broadening the view of neurodevelopmental disorders beyond postsynaptic mechanisms. In this review, we discuss presynaptic perspectives of neurodevelopmental disorders by focusing on impaired axonal transport and disturbed assembly and maintenance of presynapses. We also discuss potential strategies for restoring axonal transport as an early therapeutic intervention.


Axonal Transport , Neurodevelopmental Disorders , Presynaptic Terminals , Humans , Axons , Cell Body , Mutation , Neurodevelopmental Disorders/genetics
10.
Genes (Basel) ; 15(4)2024 Mar 28.
Article En | MEDLINE | ID: mdl-38674358

Pathogenic ASH1L variants have been reported in probands with broad phenotypic presentations, including intellectual disability, autism spectrum disorder, attention deficit hyperactivity disorder, seizures, congenital anomalies, and other skeletal, muscular, and sleep differences. Here, we review previously published individuals with pathogenic ASH1L variants and report three further probands with novel ASH1L variants and previously unreported phenotypic features, including mixed receptive language disorder and gait disturbances. These novel data from the Brain Gene Registry, an accessible repository of clinically derived genotypic and phenotypic data, have allowed for the expansion of the phenotypic and genotypic spectrum of this condition.


Histone-Lysine N-Methyltransferase , Neurodevelopmental Disorders , Phenotype , Humans , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/pathology , Male , Histone-Lysine N-Methyltransferase/genetics , Female , Child , Genotype , DNA-Binding Proteins/genetics , Intellectual Disability/genetics , Intellectual Disability/pathology , Transcription Factors/genetics , Child, Preschool , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/pathology , Mutation , Adolescent
11.
Genes (Basel) ; 15(4)2024 Mar 28.
Article En | MEDLINE | ID: mdl-38674362

Neurodevelopmental disorders are a group of complex multifactorial disorders characterized by cognitive impairment, communication deficits, abnormal behaviour, and/or motor skills resulting from abnormal neural development. Copy number variants (CNVs) are genetic alterations often associated with neurodevelopmental disorders. We evaluated the diagnostic efficacy of the array-comparative genomic hybridization (a-CGH) method and its relevance as a routine diagnostic test in patients with neurodevelopmental disorders for the identification of the molecular alterations underlying or contributing to the clinical manifestations. In the present study, we analysed 1800 subjects with neurodevelopmental disorders using a CGH microarray. We identified 208 (7%) pathogenetic CNVs, 2202 (78%) variants of uncertain significance (VOUS), and 504 (18%) benign CNVs in the 1800 patients analysed. Some alterations contain genes potentially related to neurodevelopmental disorders including CHRNA7, ANKS1B, ANKRD11, RBFOX1, ASTN2, GABRG3, SHANK2, KIF1A SETBP1, SNTG2, CTNNA2, TOP3B, CNTN4, CNTN5, and CNTN6. The identification of interesting significant genes related to neurological disorders with a-CGH is therefore an essential step in the diagnostic procedure, allowing a better understanding of both the pathophysiology of these disorders and the mechanisms underlying their clinical manifestations.


Comparative Genomic Hybridization , DNA Copy Number Variations , Neurodevelopmental Disorders , Humans , Neurodevelopmental Disorders/genetics , DNA Copy Number Variations/genetics , Female , Male , Italy , Child , Adolescent , Child, Preschool
13.
Nat Immunol ; 25(4): 598-606, 2024 Apr.
Article En | MEDLINE | ID: mdl-38565970

The intricate relationship between immune dysregulation and neurodevelopmental disorders (NDDs) has been observed across the stages of both prenatal and postnatal development. In this Review, we provide a comprehensive overview of various maternal immune conditions, ranging from infections to chronic inflammatory conditions, that impact the neurodevelopment of the fetus during pregnancy. Furthermore, we examine the presence of immunological phenotypes, such as immune-related markers and coexisting immunological disorders, in individuals with NDDs. By delving into these findings, we shed light on the potential underlying mechanisms responsible for the high occurrence of immune dysregulation alongside NDDs. We also discuss current mouse models of NDDs and their contributions to our understanding of the immune mechanisms underlying these diseases. Additionally, we discuss how neuroimmune interactions contribute to shaping the manifestation of neurological phenotypes in individuals with NDDs while also exploring potential avenues for mitigating these effects.


Neurodevelopmental Disorders , Neuroimmunomodulation , Pregnancy , Animals , Female , Mice , Neurodevelopmental Disorders/genetics , Disease Models, Animal
14.
Am J Hum Genet ; 111(4): 761-777, 2024 Apr 04.
Article En | MEDLINE | ID: mdl-38503299

Ion channels mediate voltage fluxes or action potentials that are central to the functioning of excitable cells such as neurons. The KCNB family of voltage-gated potassium channels (Kv) consists of two members (KCNB1 and KCNB2) encoded by KCNB1 and KCNB2, respectively. These channels are major contributors to delayed rectifier potassium currents arising from the neuronal soma which modulate overall excitability of neurons. In this study, we identified several mono-allelic pathogenic missense variants in KCNB2, in individuals with a neurodevelopmental syndrome with epilepsy and autism in some individuals. Recurrent dysmorphisms included a broad forehead, synophrys, and digital anomalies. Additionally, we selected three variants where genetic transmission has not been assessed, from two epilepsy studies, for inclusion in our experiments. We characterized channel properties of these variants by expressing them in oocytes of Xenopus laevis and conducting cut-open oocyte voltage clamp electrophysiology. Our datasets indicate no significant change in absolute conductance and conductance-voltage relationships of most disease variants as compared to wild type (WT), when expressed either alone or co-expressed with WT-KCNB2. However, variants c.1141A>G (p.Thr381Ala) and c.641C>T (p.Thr214Met) show complete abrogation of currents when expressed alone with the former exhibiting a left shift in activation midpoint when expressed alone or with WT-KCNB2. The variants we studied, nevertheless, show collective features of increased inactivation shifted to hyperpolarized potentials. We suggest that the effects of the variants on channel inactivation result in hyper-excitability of neurons, which contributes to disease manifestations.


Epilepsy , Mutation, Missense , Neurodevelopmental Disorders , Shab Potassium Channels , Animals , Humans , Action Potentials , Epilepsy/genetics , Neurons , Oocytes , Xenopus laevis , Shab Potassium Channels/genetics , Shab Potassium Channels/metabolism , Neurodevelopmental Disorders/genetics
15.
J Neurol ; 271(5): 2859-2865, 2024 May.
Article En | MEDLINE | ID: mdl-38441608

BACKGROUND: Heterozygous loss-of-function variants in CHD8 have been associated with a syndromic neurodevelopmental-disease spectrum, collectively referred to as CHD8-related neurodevelopmental disorders. Several different clinical manifestations, affecting neurodevelopmental and systemic domains, have been described, presenting with highly variable expressivity. Some expressions are well established and comprise autism spectrum disorders, psychomotor delay with cognitive impairment, postnatal overgrowth with macrocephaly, structural brain abnormalities, gastrointestinal disturbances, and behavioral and sleep-pattern problems. However, the complete phenotypic spectrum of CHD8-related disorders is still undefined. In 2021, our group described two singular female patients with CHD8-related neurodevelopmental disorder and striking dystonic manifestations, prompting the suggestion that dystonia should be considered a possible component of this condition. CASE SERIES PRESENTATION: We describe three additional unrelated female individuals, each carrying a different CHD8 frameshift variant and whose clinical presentations were primarily characterized by young-onset dystonia. Their dystonic manifestations were remarkably heterogeneous and ranged from focal, exercise-dependent, apparently isolated forms to generalized permanent phenotypes accompanied by spasticity and tremor. Neurocognitive impairment and autistic behaviors, typical of CHD8-related disorders, were virtually absent or at the mild end of the spectrum. CONCLUSIONS: This work validates our previous observation that dystonia is part of the phenotypic spectrum of CHD8-related neurodevelopmental disorders with potential female preponderance, raising new challenges and opportunities in the diagnosis and management of this condition. It also highlights the importance of in-depth neurologic phenotyping of patients carrying variants associated with neurodevelopmental disorders, as the connection between neurodevelopmental and movement disorders is proving closer than previously appreciated.


DNA-Binding Proteins , Phenotype , Humans , Female , DNA-Binding Proteins/genetics , Dystonia/genetics , Dystonia/etiology , Dystonia/physiopathology , Dystonia/diagnosis , Transcription Factors/genetics , Child , Adolescent , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/diagnosis , Adult , Dystonic Disorders/genetics , Dystonic Disorders/diagnosis , Dystonic Disorders/physiopathology , Dystonic Disorders/complications , Frameshift Mutation , Young Adult , Child, Preschool
16.
Epilepsy Behav ; 154: 109726, 2024 May.
Article En | MEDLINE | ID: mdl-38513571

BACKGROUND: A pathogenic variant in SCN1A can result in a spectrum of phenotypes, including Dravet syndrome (DS) and genetic epilepsy with febrile seizures plus (GEFS + ) syndrome. Dravet syndrome (DS) is associated with refractory seizures, developmental delay, intellectual disability (ID), motor impairment, and challenging behavior(1,2). GEFS + is a less severe phenotype in which cognition is often normal and seizures are less severe. Challenging behavior largely affects quality of life of patients and their families. This study describes the profile and course of the behavioral phenotype in patients with SCN1A-related epilepsy syndromes, explores correlations between behavioral difficulties and potential risk factors. METHODS: Data were collected from questionnaires, medical records, and semi-structured interviews. Behavior difficulties were measured using the Adult/Child Behavior Checklist (C/ABCL) and Adult self-report (ASR). Other questionnaires included the Pediatric Quality of Life Inventory (PedsQL), the Functional Mobility Scale (FMS) and the Sleep Behavior Questionnaire by Simonds & Parraga (SQ-SP). To determine differences in behavioral difficulties longitudinally, paired T-tests were used. Pearson correlation and Spearman rank test were used in correlation analyses and multivariable regression analyses were employed to identify potential risk factors. RESULTS: A cohort of 147 participants, including 107 participants with DS and 40 with genetic epilepsy with febrile seizures plus (GEFS + ), was evaluated. Forty-six DS participants (43.0 %) and three GEFS + participants (7.5 %) showed behavioral problems in the clinical range on the A/CBCL total problems scale. The behavioral profile in DS exists out of withdrawn behavior, aggressive behavior, and attention problems. In DS patients, sleep disturbances (ß = 1.15, p < 0.001) and a lower age (ß = -0.21, p = 0.001) were significantly associated with behavioral difficulties. Between 2015 and 2022, behavioral difficulties significantly decreased with age (t = -2.24, CI = -6.10 - -0.15, p = 0.04) in DS participants aging from adolescence into adulthood. A decrease in intellectual functioning (ß = 3.37, p = 0.02) and using less antiseizure medications in 2022 than in 2015, (ß = -1.96, p = 0.04), were identified as possible risk factors for developing (more) behavioral difficulties. CONCLUSIONS: These findings suggest that, in addition to epilepsy, behavioral difficulties are a core feature of the DS phenotype. Behavioral problems require personalized management and treatment strategies. Further research is needed to identify effective interventions.


NAV1.1 Voltage-Gated Sodium Channel , Humans , Male , Female , NAV1.1 Voltage-Gated Sodium Channel/genetics , Adult , Child , Adolescent , Young Adult , Child, Preschool , Epilepsies, Myoclonic/genetics , Epilepsies, Myoclonic/psychology , Epilepsies, Myoclonic/complications , Quality of Life , Epileptic Syndromes/genetics , Epileptic Syndromes/psychology , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/psychology , Neurodevelopmental Disorders/etiology , Seizures, Febrile/genetics , Seizures, Febrile/psychology , Seizures, Febrile/complications , Problem Behavior/psychology , Epilepsy/genetics , Epilepsy/psychology , Epilepsy/complications
17.
Orphanet J Rare Dis ; 19(1): 121, 2024 Mar 13.
Article En | MEDLINE | ID: mdl-38481258

BACKGROUND: Pathogenic variants of the IRF2BPL gene have been reported to cause neurodevelopmental disorders; however, studies focused on IRF2BPL in zebrafish are limited. RESULTS: We reported three probands diagnosed with developmental delay and epilepsy and investigated the role of IRF2BPL in neurodevelopmental disorders in zebrafish. The clinical and genetic characteristics of three patients with neurodevelopmental disorder with regression, abnormal movements, loss of speech and seizures (NEDAMSS) were collected. Three de novo variants (NM_024496.4: c.1171 C > T, p.Arg391Cys; c.1157 C > T, p.Thr386Met; and c.273_307del, p.Ala92Thrfs*29) were detected and classified as pathogenic or likely pathogenic according to ACMG guidelines. Zebrafish crispants with disruption of the ortholog gene irf2bpl demonstrated a reduced body length and spontaneous ictal-like and interictal-like discharges in an electrophysiology study. After their spasms were controlled, they gain some development improvements. CONCLUSION: We contribute two new pathogenic variants for IRF2BPL related developmental epileptic disorder which provided evidences for genetic counseling. In zebrafish model, we for the first time confirm that disruption of irf2bpl could introduce spontaneous electrographic seizures which mimics key phenotypes in human patients. Our follow-up results suggest that timely cessation of spasmodic seizures can improve the patient's neurodevelopment.


Epilepsy , Neurodevelopmental Disorders , Animals , Humans , Zebrafish/genetics , Mutation , Epilepsy/genetics , Epilepsy/diagnosis , Seizures , Neurodevelopmental Disorders/genetics , Carrier Proteins/genetics , Nuclear Proteins/genetics
19.
J Biol Chem ; 300(4): 107124, 2024 Apr.
Article En | MEDLINE | ID: mdl-38432637

Rab35 (Ras-associated binding protein) is a small GTPase that regulates endosomal membrane trafficking and functions in cell polarity, cytokinesis, and growth factor signaling. Altered Rab35 function contributes to progression of glioblastoma, defects in primary cilia formation, and altered cytokinesis. Here, we report a pediatric patient with global developmental delay, hydrocephalus, a Dandy-Walker malformation, axial hypotonia with peripheral hypertonia, visual problems, and conductive hearing impairment. Exome sequencing identified a homozygous missense variant in the GTPase fold of RAB35 (c.80G>A; p.R27H) as the most likely candidate. Functional analysis of the R27H-Rab35 variant protein revealed enhanced interaction with its guanine-nucleotide exchange factor, DENND1A and decreased interaction with a known effector, MICAL1, indicating that the protein is in an inactive conformation. Cellular expression of the variant drives the activation of Arf6, a small GTPase under negative regulatory control of Rab35. Importantly, variant expression leads to delayed cytokinesis and altered length, number, and Arl13b composition of primary cilia, known factors in neurodevelopmental disease. Our findings provide evidence of altered Rab35 function as a causative factor of a neurodevelopmental disorder.


Mutation, Missense , Neurodevelopmental Disorders , rab GTP-Binding Proteins , Humans , rab GTP-Binding Proteins/genetics , rab GTP-Binding Proteins/metabolism , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/metabolism , Neurodevelopmental Disorders/pathology , ADP-Ribosylation Factor 6 , Loss of Function Mutation , Cytokinesis/genetics , Male , ADP-Ribosylation Factors/genetics , ADP-Ribosylation Factors/metabolism , Cilia/metabolism , Cilia/genetics , Cilia/pathology , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/metabolism , Female
20.
BMC Psychiatry ; 24(1): 232, 2024 Mar 27.
Article En | MEDLINE | ID: mdl-38539137

BACKGROUND: Neurodevelopmental disorders (NDDs), such as Attention-Deficit/Hyperactivity Disorder (ADHD), Autism Spectrum Disorder (ASD), and Tourette Syndrome (TS), have been extensively studied for their multifaceted impacts on social and emotional well-being. Recently, there has been growing interest in their potential relationship with fracture risks in adulthood. This study aims to explore the associations between these disorders and fracture rates, in order to facilitate better prevention and treatment. METHODS: Employing a novel approach, this study utilized Mendelian randomization (MR) analysis to investigate the complex interplay between ADHD, ASD, TS, and fractures. The MR framework, leveraging extensive genomic datasets, facilitated a systematic examination of potential causal relationships and genetic predispositions. RESULTS: The findings unveil intriguing bidirectional causal links between ADHD, ASD, and specific types of fractures. Notably, ADHD is identified as a risk factor for fractures, with pronounced associations in various anatomical regions, including the skull, trunk, and lower limbs. Conversely, individuals with specific fractures, notably those affecting the femur and lumbar spine, exhibit an increased genetic predisposition to ADHD and ASD. In this research, no correlation was found between TS and fractures, or osteoporosis.These results provide a genetic perspective on the complex relationships between NDDs and fractures, emphasizing the importance of early diagnosis, intervention, and a holistic approach to healthcare. CONCLUSION: This research sheds new light on the intricate connections between NDDs and fractures, offering valuable insights into potential risk factors and causal links. The bidirectional causal relationships between ADHD, ASD, and specific fractures highlight the need for comprehensive clinical approaches that consider both NDDs and physical well-being.


Attention Deficit Disorder with Hyperactivity , Autism Spectrum Disorder , Fractures, Bone , Neurodevelopmental Disorders , Osteoporosis , Tourette Syndrome , Humans , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/psychology , Mendelian Randomization Analysis , Neurodevelopmental Disorders/genetics , Attention Deficit Disorder with Hyperactivity/genetics , Attention Deficit Disorder with Hyperactivity/psychology , Osteoporosis/genetics , Fractures, Bone/genetics , Genetic Predisposition to Disease
...